KALKULUS 2 : INTEGRAL TENTU

Assalamualaikum Warahmatullahi Wabarakatuh


Hallo Semuanya...
Selamat datang di blog saya, untuk kalian yang baru mampir, perkenalkan nama saya Ayu Rizkyca Awalia, mahasiswa semester 3 Sekolah Tinggi Teknik PLN Jakarta.

Seperti judulnya, kali ini saya akan membagikan sedikit materi kalkulus 2 tentang integral tentu.
Untuk pengerjaan integral tentu itu sendiri itu cukup mudah karena kita hanya tinggal menambahkan batas atas dan batas bawahnya. Apalagi sebelummnya kita sudah mempelajari materi tentang integral tak tentu. Kalian bisa mencarinya di blog ini, saya seudah membagikan sedikit tentang materinya.

Luas suatu bidang dengan bentuk  tertentu (seperti: lingkaran, segitiga, segiempat, dll) dapat ditentukan dengan rumus-rumus dasar yang sudah diketahui. Namun, untuk menentukan luas suatu bidang yang tidak beraturan atau tidak tentu akan sulit. Lihatlah gambar di bawah yang merupakan luasan area dibawah grafik y = f(x) yang dibatasi oleh x = a, x = b, dan garis x. Luas area tersebut hampir mendekati dengan luas dari total 11 segi panjang.


Jika jumlah segi panjang diperbanyak 21 buah seperti gambar dibawah, maka jumlah total luas persegi panjang tersebut semakin mendekati luas area grafik yang ditentukan. Sehingga untuk mendapatkan luas area tersebut, jumlah persegi panjang dibuat mendekati tak hingga. Dapat disimpulkan luas dari area sama dengan limit luas total segi panjang menuju tak hingga.
Konsep ini menjadi dasar untuk mencari luas suatu bidang tak tentu. Luas suatu bidang di bawah grafik y = f(x) yang dibatasi oleh x = a, x = b dapat dicari dengan mengintegralkan fungsi tersebut pada selang a \le x \le b. Atau dapat ditulis:
Luas =\int^b_af(x)dx
Pengoperasian integral tentu sama dengan intergral tak tentu hanya saja nilai a dan b disubstitusikan dalam fungsi hasil integral sebagai berikut:
\int^b_af(x) dx = [F(x)]^b_a=F(b)-F(a)
Lihat contoh berikut ini sebagai pemahaman:
  • \int^3_1 4x^3dx=[x^4]^3_1=(3^4)-(1^4) = 80
  • \int^2_1\frac{1}{x^3}dx =[-\frac{1}{2x^2}]^2_1 = [-\frac{1}{2(2)^2}]^2_1-(-\frac{1}{2(1)^2}) = -\frac{1}{8}+\frac{1}{2}=\frac{3}{8}
Intergral tentu memiliki sejumlah sifat-sifat penting yang dapat digunakan dalam pengoperasian matematika yaitu :
  • \int^a_a f(x)dx=0
  • \int^b_a f(x) dx = - \int^a_b f(x) dx
  • \int^b_a k \cdot f(x)dx=k \cdot \int^b_af(x)dx     …     dengan k adalah konstanta/ bilangan
  • \int^b_af(x)+g(x)dx = \int ^b_a f(x)dx +\int^b_a g(x)dx
  • \int^b_af(x)-g(x)dx = \int^b_af(x)dx - \int^b_ag(x)dx
  • \int^c_af(x)dx = \int^b_af(x)dx+\int^c_bf(x)dx     …     dengan a < b < c
Pengintegralan suatu fungsi tidak selamanya dapat dikerjakan secara langsung dengan rumus dasar:
\int ax^ndx=\frac{a}{(n+1)}x^{(n+1)}+C
Bisa atau tidak ditentukan oleh bentuk fungsi yang diintegralkan. Teknik pengintegralan terdiri dari dua jenis yaitu teknik substitusi dan teknik parsial

Penggunaan Integral

Pada penjelasan sebelumnya integral dapat digunakan untuk mencari luas suatu bidang sebagai fungsi pada interval a \le x \le b  dan dibatasi sumbu x sebagaimana proses integral tentu. Lihat tabel berikut:

Jenis KegunaanBatasanLuas (A)Keterangan
Luas grafik
  •  Grafik f(x)
  •  a ≤ x ≤ b
  •  Sumbu x
A =\int^b_a f(x) dxLuas bidang berada pada:
  • Atas sumbu x, atau
  • Bawah sumbu x
Luas antara dua grafik
  •  Grafik f(x)
  •  Grafik g(x)
  •  a ≤ x ≤ b
A =\int^b_a f(x) - g(x) dxf(x) > g(x) pada selang a ≤ x ≤ b
Luas antara dua grafik dengan ordo maksimal 2
  •  Grafik f(x)
  •  Grafik g(x)
A = \frac{D \sqrt{D}}{6a^2}Determinan (D) didapat dari f(x) = g(x) menjadi ax2 + bx + c = 0
Pada penggunaan lebih lanjut, integral dapat digunakan untuk mencari volume. Volume didapat dari suatu bidang yang mengelilingi/berputar pada suatu sumbu. Metode untuk menghitung volume benda putar adalah metode cakram dan metode kulit.

Metode Cakram

Jenis VolumeBatasan BidangSumbu PutarVolume
Volume Grafik
  •  Grafik f(x)
  •  a ≤ x ≤ b
  •  Sumbu x
Sumbu xV = \int^b_a \pi [f(x)]^2) dx
  •  Grafik f(y)
  •  a ≤ y ≤ b
  •  Sumbu y
Sumbu yV = \int^b_a \pi [f(y)]^2) dy
Volume Antara Dua Grafik
  •  Grafik f(x)
  •  Grafik g(x)
  •  a ≤ x ≤ b
Sumbu xV = \int^b_a [f(x)]^2 - [g(x)]^2) dx
  •  Grafik f(y)
  •  Grafik g(y)
  •  a ≤ y ≤ b
Sumbu yV = \int^b_a [f(y)]^2 - [g(y)]^2) dy

Metode Kulit

Jenis VolumeBatasan BidangSumbu PutarVolume
Volume Grafik
  •  Grafik f(x)
  •  a ≤ x ≤ b
  •  Sumbu x
Sumbu yV = 2 \pi \int^b_a x \cdot f(x) dx
Volume Antara Dua Grafik
  •  Grafik f(x)
  •  Grafik g(x)
  •  a ≤ x ≤ b
Sumbu yV = 2 \pi \int^b_a x \cdot [f(x) - g(x)] dx

Mungkin itu saja materi yang dapat saya bagikan ke teman teman semua, untuk contoh soalnya teman teman bisa berkunjung ke channel youtube aku : https://www.youtube.com/channel/UCOe1cNsLdneGOAHBqKtA4xQ?view_as=subscriber

Jangan lupa subscribe juga ya sebagai bentuk dukungan teman teman semua, terimakasih.
Semoga tulisan ini bermanfaat, selamat dan semangat belajar :)

Komentar

Postingan Populer